
RisingStack 1

BUILDING WITH NODE.JS
Everything you need to build and scale up a Node app properly

(Third Part of the Node.js at Scale Series)

From the Engineers of

https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-3&utm_campaign=trace

RisingStack 2

CHAPTER ONE: PROJECT STRUCTURING 03

Table of contents

The first chapter helps you to build an app that’s easy to
scale and maintain, and where the config is separated
from business logic.

CHAPTER TWO: CLEAN CODING 10

This chapter covers general clean coding guidelines for
naming and using variables & functions, as well as some
JavaScript specific clean coding best practices

CHAPTER THREE: ASYNC BEST PRACTICES 19

This chapter covers what tools and techniques you have
at your disposal when handling Node.js asynchronous
operations. Learn how to avoid callback hell !

CHAPTER FOUR: EVENT SOURCING 25

Learn what Event Sourcing is, and when should you use
it. We’ll also take a look at some examples with code
snippets.

CHAPTER FIVE: CQRS EXPLAINED 29

The final chapter explains how CQRS (Command Query
Responsibility Segregation) works and how you can use
it. Example repo and real life use-cases included.

RisingStack 3

 CHAPTER ONE:
PROJECT STRUCTURING

Project structuring is an important topic because the way you

bootstrap your application can determine the whole development

experience throughout the life of the project.

In this chapter I’ll answer some of the most common questions

we receive at RisingStack about structuring advanced Node

applications, and help you with structuring a complex project.

These are the goals that we are aiming for:

* Writing an application that is easy to scale and maintain.

* The config is well separated from the business logic.

* Our application can consist of multiple process types.

THE NODE.JS PROJECT STRUCTURE

Our example application is listening on Twitter tweets and tracks

certain keywords. In case of a keyword match, the tweet will be sent

to a RabbitMQ queue, which will be processed and saved to Redis.

We will also have a REST API exposing the tweets we have saved.

You can take a look at the code on GitHub. The file structure for this

project looks like the following (head over to next page):

https://github.com/RisingStack/multi-process-nodejs-example

RisingStack 4

In this example we have 3 processes:

* twitter-stream-worker: The process is listening on Twitter for 	

 keywords and sends the tweets to a RabbitMQ queue.

* social-preprocessor-worker: The process is listening on the 	

 RabbitMQ queue and saves the tweets to Redis and removes old

 ones.

* web: The process is serving a REST API with a single endpoint:

 GET /api/v1/tweets?limit&offset.

RisingStack 5

We will get to what differentiates a web and a worker process, but

let’s start with the config.

HOW TO HANDLE DIFFERENT ENVIRONMENTS

AND CONFIGURATIONS?

Load your deployment specific configurations from environment

variables and never add them to the codebase as constants. These

are the configurations that can vary between deployments and

runtime environments, like CI, staging or production. Basically, you

can have the same code running everywhere.

A good test for whether the config is correctly separated from

the application internals is that the codebase could be made

public at any moment. This means that you can be protected from

accidentally leaking secrets or compromising credentials on version

control.

The environment variables can be accessed via the process.env

object. Keep in mind that all the values have a type of String, so

you might need to use type conversions.

RisingStack 6

CONFIG VALIDATION

Validating environment variables is also a quite useful technique.

It can help you catching configuration errors on startup before

your application does anything else. You can read more about the

benefits of early error detection of configurations by Adrian Colyer in

this blog post.

This is how our improved config file looks like with schema

validation using the joi validator:

CONFIG SPLITTING

Splitting the configuration by components can be a good solution to

forego a single, growing config file.

https://blog.acolyer.org/2016/11/29/early-detection-of-configuration-errors-to-reduce-failure-damage/

RisingStack 7

Then in the config.js file we only need to combine the components.

You should never group your config together into “environment”

specific files, like config/production.js for production. It doesn’t

scale well as your app expands into more deployments over time.

RisingStack 8

HOW TO ORGANIZE

A MULTI-PROCESS APPLICATION?

The process is the main building block of a modern application. An

app can have multiple stateless processes, just like in our example.

HTTP requests can be handled by a web process and long-running

or scheduled background tasks by a worker. They are stateless,

because any data that needs to be persisted is stored in a stateful

database. For this reason, adding more concurrent processes are

very simple. These processes can be independently scaled based on

the load or other metrics.

In the previous section, we saw how to break down the config

into components. This comes very handy when having different

process types. Each type can have its own config only requiring

the components it needs, without expecting unused environment

variables.

In the config/index.js file:

In the root index.js file we start the process selected with the

PROCESS_TYPE environment variable:

RisingStack 9

The nice thing about this is that we still got one application, but we

have managed to split it into multiple, independent processes. Each

of them can be started and scaled individually, without influencing

the other parts. You can achieve this without sacrificing your DRY

codebase, because parts of the code, like the models, can be shared

between the different processes.

How to organize your test files?

Place your test files next to the tested modules using some kind of

naming convention, like <module_name>.spec.js and

<module_name>.e2e.spec.js. Your tests should live together

with the tested modules, keeping them in sync. It would be

really hard to find and maintain the tests and the corresponding

functionality when the test files are completely separated from the

business logic.

A separated /test folder can hold all the additional test setup and

utilities not used by the application itself.

WHERE TO PUT YOUR BUILD AND SCRIPT FILES?

We tend to create a /scripts folder where we put our bash and

node scripts for database synchronization, front-end builds and

so on. This folder separates them from your application code

and prevents you from putting too many script files into the root

directory. List them in your npm scripts for easier usage.

https://docs.npmjs.com/misc/scripts

RisingStack 10

 CHAPTER TWO:
CLEAN CODING

Writing clean code is what you must know and do in order to call

yourself a professional developer. There is no reasonable excuse for

doing anything less than your best.

In this chapter, we will cover general clean coding principles for

naming and using variables & functions, as well as some JavaScript

specific clean coding best practices.

“Even bad code can function. But if the code isn’t clean, it can bring

a development organization to its knees.”

				 — Robert C. Martin (Uncle Bob)

FIRST OF ALL, WHAT DOES

CLEAN CODING MEAN?

Clean coding means that in the first place you write code for your

later self and for your co-workers and not for the machine.

Your code must be easily understandable for humans.

You know you are working on a clean code when each routine you

read turns out to be pretty much what you expected.

RisingStack 11

JAVASCRIPT CLEAN CODING BEST PRACTICES

Now that we know what every developer should aim for, let’s go

through the best practices!

How should I name my variables?

Use intention-revealing names and don’t worry if you have long

variable names instead of saving a few keyboard strokes.

If you follow this practice, your names become searchable, which

helps a lot when you do refactors or you are just looking for

something.

Also, make meaningful distinctions and don’t add extra, unnecessary

nouns to the variable names.

Make your variable names easy to pronounce, because for the

human mind it takes less effort to process.

When you are doing code reviews with your fellow developers, these

names are easier to reference.

RisingStack 12

In short, don’t cause extra mental mapping with your names.

How should I write my functions?

Your functions should do one thing only on one level of abstraction.

Functions should do one thing. They should do it well.

 They should do it only.

			 — Robert C. Martin (Uncle Bob)

RisingStack 13

After you wrote your functions properly, you can test how well you

did with CPU profiling - which helps you to find bottlenecks.

Use long, descriptive names

A function name should be a verb or a verb phrase, and it needs

to communicate its intent, as well as the order and intent of the

arguments.

A long descriptive name is way better than a short, enigmatic name

or a long descriptive comment.

Avoid long argument list

Use a single object parameter and destructuring assignment instead.

It also makes handling optional parameters much easier.

Reduce side effects

Use pure functions without side effects, whenever you can. They are

really easy to use and test.

https://blog.risingstack.com/node-js-tutorial-debugging-async-memory-leaks-cpu-profiling/

RisingStack 14

Organize your functions in a file
according to the stepdown rule

Higher level functions should be on top and lower levels below. It

makes it natural to read the source code.

RisingStack 15

Query or modification

Functions should either do something (modify) or answer something

(query), but not both.

EVERYONE LIKES TO WRITE JAVASCRIPT

DIFFERENTLY, WHAT TO DO?

As JavaScript is dynamic and loosely typed, it is especially prone to

programmer errors.

Use project or company wise linter rules and formatting style.

The stricter the rules, the less effort will go into pointing out bad

formatting in code reviews. It should cover things like consistent

naming, indentation size, whitespace placement and even

semicolons.

The standard JS style is quite nice to start with, but in my opinion, it

isn’t strict enough. I can agree most of the rules in the Airbnb style.

HOW TO WRITE NICE ASYNC CODE?

Use Promises whenever you can.

Promises are natively available from Node 4. Instead of writing

nested callbacks, you can have chainable Promise calls.

http://standardjs.com/
https://github.com/airbnb/javascript
https://blog.risingstack.com/asynchronous-javascript/

RisingStack 16

Most of the libraries out there have both callback and promise

interfaces, prefer the latter. You can even convert callback APIs

to promise based one by wrapping them using packages like es6-

promisify.

The next step would be to use async/await (≥ Node 7) or

generators with co (≥ Node 4) to achieve synchronous like control

flows for your asynchronous code.

https://www.npmjs.com/package/es6-promisify
https://www.npmjs.com/package/es6-promisify

RisingStack 17

RisingStack 18

HOW SHOULD I WRITE PERFORMANT CODE?

In the first place, you should write clean code, then use profiling to

find performance bottlenecks.

Never try to write performant and smart code first, instead, optimize

the code when you need to and refer to true impact instead of micro-

benchmarks.

Although, there are some straightforward scenarios like eagerly

initializing what you can (eg. joi schemas in route handlers, which

would be used in every request and adds serious overhead if

recreated every time) and using asynchronous instead of blocking

code.

https://blog.risingstack.com/node-js-tutorial-debugging-async-memory-leaks-cpu-profiling/

RisingStack 19

CHAPTER THREE:
ASYNC BEST PRACTICES

In this chapter, we cover what tools and techniques you have at your

disposal when handling Node.js asynchronous operations: async.

js, promises, generators and async functions. After reading this part,

you’ll know how to avoid the despised callback hell!

Asynchronous programming in Node.js

Previously we have gathered a strong knowledge about

asynchronous programming in JavaScript and understood how the

Node.js event loop works.

If you did not read these articles, I highly recommend them as

introductions!

THE PROBLEM WITH NODE.JS ASYNC

Node.js itself is single threaded, but some tasks can run parallelly -

thanks to its asynchronous nature.

But what does running parallelly mean in practice?

Since we program a single threaded VM, it is essential that we do not

block execution by waiting for I/O, but handle them concurrently with

the help of Node.js’s event driven APIs.

Let’s take a look at some fundamental patterns, and learn how we

can write resource efficient, non-blocking code, with the built-in

solutions of Node.js and some third-party libraries.

THE CLASSICAL APPROACH - CALLBACKS

Let’s take a look at these simple async operations. They do nothing

special, just fire a timer and call a function once the timer finished.

https://blog.risingstack.com/node-hero-async-programming-in-node-js/
https://blog.risingstack.com/node-js-at-scale-understanding-node-js-event-loop/

RisingStack 20

Seems easy, right?

Our higher-order functions can be executed sequentially or parallelly

with the basic “pattern” by nesting callbacks - but using this method

can lead to an untameable callback-hell.

Never use the nested callback approach for handling asynchronous

Node.js operations!

AVOIDING CALLBACK HELL WITH CONTROL

FLOW MANAGERS

To become an efficient Node.js developer, you have to avoid the

constantly growing indentation level, produce clean and readable

code and be able to handle complex flows.

Let us show you some of the libraries we can use to organize our

code in a nice and maintainable way!

#1: Meet the Async Module

Async is a utility module which provides straight-forward, powerful

functions for working with asynchronous JavaScript.

RisingStack 21

Async contains some common patterns for asynchronous flow

control with the respect of error-first callbacks.

Let’s see how our previous example would look like using async!

What kind of witchcraft just happened?

Actually, there is no magic to reveal. You can easily implement your

async job-runner which can run tasks parallelly and wait for each to

be ready.

Let’s take a look at what async does under the hood!

Essentially, a new callback is injected into the functions, and this is

how async knows when a function is finished.

https://github.com/caolan/async

RisingStack 22

#2: Using co - generator based flow-control for Node.js

In case you wouldn’t like to stick to the solid callback protocol, then

co can be a good choice for you.

co is a generator based control flow tool for Node.js and the browser,

using promises, letting you write non-blocking code in a nice-ish way.

co is a powerful alternative which takes advantage of generator

functions tied with promises without the overhead of implementing

custom iterators.

As for now, I suggest to go with co, since one of the most waited

Node.js async/await functionality is only available in the nightly,

unstable v7.x builds. But if you are already using Promises,

switching from co to async function will be easy.

This syntactic sugar on top of Promises and Generators will

eliminate the problem of callbacks and even help you to build nice

flow control structures. Almost like writing synchronous code, right?

Stable Node.js branches will receive this update in the near future,

so you will be able to remove co and just do the same.

FLOW CONTROL IN PRACTICE

As we have just learned several tools and tricks to handle async, it

is time to do some practice with fundamental control flows to make

our code more efficient and clean.

https://github.com/tj/co
https://blog.risingstack.com/introduction-to-koa-generators/
https://blog.risingstack.com/introduction-to-koa-generators/
https://blog.risingstack.com/async-await-node-js-7-nightly/

RisingStack 23

Let’s take an example and write a route handler for our web app,

where the request can be resolved after 3 steps: validateParams,

dbQuery and serviceCall.

If you’d like to write them without any helper, you’d most probably

end up with something like this. Not so nice, right?

Instead of the callback-hell, we can use the async library to refactor

our code, as we have already learned:

Let’s take it a step further! Rewrite it to use Promises:

Also, you can use co powered generators with Promises:

RisingStack 24

It feels like a “synchronous” code but still doing async jobs one after

each other.

Lets see how this snippet should work with async / await.

TAKEAWAY RULES FOR NODE.JS & ASYNC

Fortunately, Node.js eliminates the complexities of writing thread-

safe code. You just have to stick to these rules to keep things

smooth:

* As a rule of thumb, prefer async over sync API, because using a non-

 blocking approach gives superior performance over the

 synchronous scenario.

* Always use the best fitting flow control or a mix of them in order

 reduce the time spent waiting for I/O to complete.

You can find all of the code from this article in this repository.

https://github.com/RisingStack/nodejs-at-scale-handling-async

RisingStack 25

CHAPTER FOUR: EVENT SOURCING

Event Sourcing is a powerful architectural pattern to handle complex

application states that may need to be rebuilt, re-played, audited or

debugged.

From this chapter you can learn what Event Sourcing is, and when

should you use it. We’ll also take a look at some Event sourcing

examples with code snippets.

EVENT SOURCING

Event Sourcing is a software architecture pattern which makes

it possible to reconstruct past states (latest state as well). It’s

achieved in a way that every state change gets stored as a sequence

of events.

The State of your application is like a user’s account balance or

subscription at a particular time. This current state may only exist in

memory.

Good examples for Event Sourcing are version control systems that

stores current state as diffs. The current state is your latest source

code, and events are your commits.

WHY IS EVENT SOURCING USEFUL?

In our hypothetical example, you are working on an online money

transfer site, where every customer has an account balance. Imagine

that you just started working on a beautiful Monday morning when

it suddenly turns out that you made a mistake and used a wrong

currency exchange for the whole past week. In this case, every

account which sent and received money in a last seven days are in a

corrupt state.

With event sourcing, there’s no need to panic!

If your site uses event sourcing, you can revert the account balances

to their previous uncorrupted state, fix the exchange rate and replay

all the events until now. That’s it, your job and reputation is saved!

RisingStack 26

Other use-cases

You can use events to audit or debug state changes in your system.

They can also be useful for handling SaaS subscriptions. In a usual

subscription based system, your users can buy a plan, upgrade it,

downgrade it, pro-rate a current price, cancel a plan, apply a coupon,

and so on... A good event log can be very useful to figure out what

happened.

So with event sourcing you can:

* Rebuild states completely

* Replay states from a specific time

* Reconstruct the state of a specific moment for temporary query

WHAT IS AN EVENT?

An Event is something that happened in the past. An Event is not a

snapshot of a state at a specific time; it’s the action itself with all the

information that’s necessary to replay it.

Events should be a simple object which describes some action that

occurred. They should be immutable and stored in an append-only

way. Their immutable append-only nature makes them suitable to

use as audit logs too.

For proper Event Sourcing, you must create an event for every state

change & preserve the order of events as well. This is what makes

possible to undo and redo events or even replay them from a specific

timestamp.

Be careful with External Systems!

As any software pattern, Event Sourcing can be challenging at some

points as well.

The external systems that your application communicates with are

usually not prepared for event sourcing, so you should be careful

when you replay your events. I’m sure that you don’t wish to charge

your customers twice or send all welcome emails again.

To solve this challenge, you should handle replays in your

communication layers!

RisingStack 27

COMMAND SOURCING

Command Sourcing is a different approach from Event Sourcing -

make sure you don’t mix ‘em up by accident!

Event Sourcing:

* Persist only changes in state

* Replay can be side-effect free

Command Sourcing:

* Persist Commands

* Replay may trigger side-effects

EXAMPLE FOR EVENT SOURCING

In this simple example, we will apply Event Sourcing for our

accounts:

Let’s rebuild the latest state from scratch, using our event log:

Undo the latest event:

RisingStack 28

Query accounts state at a specific time:

LEARNING MORE..

For more detailed examples, you can check out our Event Sourcing

Example repository.

For more general and deeper understanding of Event Sourcing I

recommend to read these articles:

* Martin Fowler - Event Sourcing

* MSDN - Event Sourcing Pattern

https://github.com/RisingStack/event-sourcing-example
https://github.com/RisingStack/event-sourcing-example
http://martinfowler.com/eaaDev/EventSourcing.html
https://msdn.microsoft.com/en-us/library/dn589792.aspx

RisingStack 29

CHAPTER FIVE: CQRS EXPLAINED

What is CQRS?

CQRS is an architectural pattern, where the acronym stands for

Command Query Responsibility Segregation. We can talk about

CQRS when the data read operations are separated from the data

write operations, and they happen on a different interface.

In most of the CQRS systems, read and write operations use

different data models, sometimes even different data stores.

This kind of segregation makes it easier to scale, read and write

operations and to control security - but adds extra complexity to your

system.

The level of segregation can vary in CQRS systems:

* single data stores and separated model for

 reading and updating data

* separated data stores and separated model for

 reading and updating data

In the simplest data store separation, we can use read-only replicas

to achieve segregation.

WHY AND WHEN TO USE CQRS?

In a typical data management system, all CRUD (Create Read Update

Delete) operations are executed on the same interface of the entities

in a single data storage. Like creating, updating, querying and

deleting table rows in an SQL database via the same model.

CQRS really shines compared to the traditional approach (using a

single model) when you build complex data models to validate and

fulfil your business logic when data manipulation happens. Read

operations compared to update and write operations can be very

different or much simpler - like accessing a subset of your data only.

REAL WORLD EXAMPLE

In our Node.js Monitoring Tool, we use CQRS to segregate saving

and representing the data. For example, when you see a distributed

tracing visualization on our UI, the data behind it arrived in smaller

https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-3&utm_campaign=trace

RisingStack 30

chunks from our customers application agents to our public

collector API.

In the collector API, we only do a thin validation and send the data

to a messaging queue for processing. On the other end of the queue,

workers are consuming messages and resolving all the necessary

dependencies via other services. These workers are also saving the

transformed data to the database.

If any issue happens, we send back the message with exponential

backoff and max limit to our messaging queue. Compared to this

complex data writing flow, on the representation side of the flow, we

only query a read-replica database and visualize the result to our

customers.

Trace by RisingStack data processing with CQRS

CQRS AND EVENT SOURCING

I’ve seen many times that people are confusing these two concepts.

Both of them are heavily used in event driven infrastructures like in

an event driven microservices, but they mean very different things.

REPORTING DATABASE - DENORMALIZER

In some event driven systems, CQRS is implemented in a way that

the system contains one or multiple Reporting databases.

A Reporting database is an entirely different read-only storage that

models and persists the data in the best format for representing it.

It’s okay to store it in a denormalized format to optimize it for the

client needs. In some cases, the reporting database contains only

derived data, even from multiple data sources.

RisingStack 31

In a microservices architecture, we call a service the Denormalizer

if it listens for some events and maintains a Reporting Database

based on these. The client is reading the denormalized service’s

reporting database.

An example can be that the user profile service emits a user.edit

event with { id: 1, name: ‘John Doe’, state: ‘churn’ }

payload, the Denormalizer service listens to it but only stores the

{ name: ‘John Doe’ } in its Reporting Database, because the

client is not interested in the internal state churn of the user.

It can be hard to keep a Reporting Database in sync. Usually, we can

only aim to eventual consistency.

A CQRS NODE.JS EXAMPLE REPO

For our CQRS with Denormalizer Node.js example visit our cqrs-

example GitHub repository.

OUTRO

CQRS is a powerful architectural pattern to segregate read and write

operations and their interfaces, but it also adds extra complexity to

your system.

In most of the cases, you shouldn’t use CQRS for the whole system,

only for specific parts where the complexity and scalability make it

necessary.

https://github.com/RisingStack/cqrs-example
https://github.com/RisingStack/cqrs-example

RisingStack 32

To read more about CQRS and Reporting databases, I recommend to

check out these resources:

* CQRS - Martin Fowler

* CQRS - MSDN

* CQRS, Task Based UIs, Event Sourcing agh! - Greg Young

* CQRS and Event Sourcing - Code on the Beach 2014 - Greg Young

* ReportingDatabase - Martin Fowler

+1: THE IMPORTANCE OF
NODE.JS MONITORING

Getting insights into production systems is critical when you are

building Node.js applications! You have an obligation to constantly

detect bottlenecks and figure out what slows your product down.

An even greater issue is to handle and preempt downtimes. You

must be notified as soon as they happen, preferably before your

customers start to complain. Based on these needs, proper

monitoring should give you at least the following features and

insights into your application’s behavior:

Profiling on a code level

Monitoring network connections

Performance dashboard

Real-time alerting

We at RisingStack build a solution which excels with all of these

functionalities, and even more.

If you’d like to give it a try, you can now do it for free - just head over

to our landing page at: trace.risingstack.com

https://martinfowler.com/bliki/CQRS.html
https://msdn.microsoft.com/en-us/library/dn568103.aspx
http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/
https://www.youtube.com/watch?v=JHGkaShoyNs
https://martinfowler.com/bliki/ReportingDatabase.html
https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-3&utm_campaign=trace
https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-3&utm_campaign=trace

