BUILDING WITH NODE.JS

Everything you need to build and scale up a Node app properly

(Third Part of the Node.js at Scale Series)

From the Engineers of o“%o trace

by RisingStack

https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-3&utm_campaign=trace

Table of contents

CHAPTER ONE: PROJECT STRUCTURING 03

The first chapter helps you to build an app that’s easy to
scale and maintain, and where the config is separated
from business logic.

CHAPTER TWO: CLEAN CODING 10

This chapter covers general clean coding guidelines for
naming and using variables & functions, as well as some
JavaScript specific clean coding best practices

CHAPTER THREE: ASYNC BEST PRACTICES 19

This chapter covers what tools and techniques you have
at your disposal when handling Node.js asynchronous
operations. Learn how to avoid callback hell !

CHAPTER FOUR: EVENT SOURCING 25

Learn what Event Sourcing is, and when should you use
it. We'll also take a look at some examples with code
shippets.

CHAPTER FIVE: CQRS EXPLAINED 29

The final chapter explains how CQRS (Command Query
Responsibility Segregation) works and how you can use
it. Example repo and real life use-cases included.

RisingStack 2

CHAPTER ONE:
PROJECT STRUCTURING

Project structuring is an important topic because the way you
bootstrap your application can determine the whole development
experience throughout the life of the project.

In this chapter I'll answer some of the most common questions
we receive at RisingStack about structuring advanced Node

applications, and help you with structuring a complex project.
These are the goals that we are aiming for:

* Writing an application that is easy to scale and maintain.
* The config is well separated from the business logic.

* Qur application can consist of multiple process types.

THE NODE.JS PROJECT STRUCTURE

Our example application is listening on Twitter tweets and tracks
certain keywords. In case of a keyword match, the tweet will be sent
to a RabbitMQ queue, which will be processed and saved to Redis.
We will also have a REST API exposing the tweets we have saved.

You can take a look at the code on GitHub. The file structure for this
project looks like the following (head over to next page):

RisingStack

https://github.com/RisingStack/multi-process-nodejs-example

In this example we have 3 processes:

*twitter-stream-worker: The process is listening on Twitter for
keywords and sends the tweets to a RabbitMQ queue.

*social-preprocessor-worker: The process is listening on the
RabbitMQ queue and saves the tweets to Redis and removes old
ones.

*web: The process is serving a REST APl with a single endpoint:
GET /api/v1/tweets?limit&offset.

We will get to what differentiates a web and a worker process, but
let’s start with the config.

HOW TO HANDLE DIFFERENT ENVIRONMENTS
AND CONFIGURATIONS?

Load your deployment specific configurations from environment
variables and never add them to the codebase as constants. These
are the configurations that can vary between deployments and
runtime environments, like Cl, staging or production. Basically, you

can have the same code running everywhere.

A good test for whether the config is correctly separated from

the application internals is that the codebase could be made

public at any moment. This means that you can be protected from
accidentally leaking secrets or compromising credentials on version

control.

The environment variables can be accessed viathe process.env
object. Keep in mind that all the values have atype of String, so

you might need to use type conversions.

'use strict’'

L
"NODE_ENV"',
'PORT"
].forEach((name) => {
if (!process.env[name]) {
throw new Error(Environment variable is missing’)
}
b

const config = {
env: process.env.NODE_ENV,
logger: {
level: process.env.LOG_LEVEL || 'info',
enabled: process.env.BOOLEAN ?
process.env.BOOLEAN. toLowerCase() === 'true' : false
1,
server: {
port: Number(process.env.PORT)
}

3

module.exports = config

CONFIG VALIDATION

Validating environment variables is also a quite useful technique.

It can help you catching configuration errors on startup before

your application does anything else. You can read more about the
benefits of early error detection of configurations by Adrian Colyer in
this blog post.

This is how our improved config file looks like with schema

validation using the joi validator:

'use strict’'
const joi = require('joi')

const envVarsSchema = joi.object({
NODE_ENV: joi.string(Q
.allow(['development', 'production', 'test', 'provision'])
.requiredQ),
PORT: joi.number()
.required(),
LOGGER_LEVEL: joi.string(Q
.allow(['error', 'warn', 'info', 'verbose', 'debug',
'silly'])
.default('info'),
LOGGER_ENABLED: joi.boolean()
.truthy('TRUE")
.truthy('true')
.falsy('FALSE")
.falsy('false')
.default(true)
1) .unknown()
.requiredQ)

const { error, value: envwars } = joi.validate(process.env,

envVarsSchema)
if Cerror) {
throw new Error(Config validation error:

}

const config = {
env: envVars.NODE_ENV,
isTest: envVars.NODE_ENV 'test',
isDevelopment: envVars.NODE_ENV === 'development',
logger: {
level: envVars.LOGGER_LEVEL,
enabled: envVars.LOGGER_ENABLED
1,
server: {
port: envVars.PORT
}

module.exports = config

CONFIG SPLITTING

Splitting the configuration by components can be a good solution to

forego a single, growing config file.

https://blog.acolyer.org/2016/11/29/early-detection-of-configuration-errors-to-reduce-failure-damage/

'use strict'

const joi = require('joi')

const envVarsSchema = joi.object({
LOGGER_LEVEL: joi.string(Q)
.allow(['error', 'warn', 'info', 'verbose', 'debug',
'silly'1]D
.default('info'),
LOGGER_ENABLED: joi.boolean()
.truthy('TRUE")
.truthy('true')
.falsy('FALSE")
.falsy('false')
.default(true)
P .unknown()
.requiredQ)

const { error, value: envwVars } = joi.validate(process.env,
envVarsSchema)
if Cerror) {

throw new Error(Config validation error:

}

const config = {
logger: {
level: envVars.LOGGER_LEVEL,
enabled: envVars.LOGGER_ENABLED

module.exports = config

Then in the config. j s file we only need to combine the components.

'use strict’'

const common = require('./components/common')
const logger = require('./components/logger"')
const redis = require('./components/redis')

const server = require('./components/server')

module.exports = Object.assign({}, common, logger, redis,

server)

You should never group your config together into “environment”
specific files, like config/production. js for production. It doesn't
scale well as your app expands into more deployments over time.

HOW TO ORGANIZE
A MULTI-PROCESS APPLICATION?

The process is the main building block of a modern application. An
app can have multiple stateless processes, just like in our example.
HTTP requests can be handled by a web process and long-running
or scheduled background tasks by a worker. They are stateless,
because any data that needs to be persisted is stored in a stateful
database. For this reason, adding more concurrent processes are
very simple. These processes can be independently scaled based on

the load or other metrics.

In the previous section, we saw how to break down the config
into components. This comes very handy when having different
process types. Each type can have its own config only requiring
the components it needs, without expecting unused environment

variables.

Inthe config/index. js file:

'use strict'

const processType = process.env.PROCESS_TYPE

let config
try {

config = require(./ D)
} catch (ex) {

if (ex.code === "MODULE_NOT_FOUND') {

throw new Error("No config for process type:
P
}

throw ex

}

module.exports = config

Inthe root index. js file we start the process selected with the
PROCESS_TYPE environment variable:

'use strict'’
const processType = process.env.PROCESS_TYPE
if (processType === 'web') {

require('./web")
else if (processType === 'twitter-stream-worker') {

require('./worker/twitter-stream')
S if (processType === 'social-preprocessor-worker') {
e('./worker/social-preprocessor')

ow new Error(" is an unsupported process
type. Use one of: 'web', 'twitter-stream-worker', 'social-
preprocessor-worker"'!")

}

The nice thing about this is that we still got one application, but we
have managed to split it into multiple, independent processes. Each
of them can be started and scaled individually, without influencing
the other parts. You can achieve this without sacrificing your DRY
codebase, because parts of the code, like the models, can be shared

between the different processes.

How to organize your test files?

Place your test files next to the tested modules using some kind of
naming convention, like <module_name>.spec.js and
<module_name>.e2e.spec.js. Yourtests should live together
with the tested modules, keeping them in sync. It would be

really hard to find and maintain the tests and the corresponding
functionality when the test files are completely separated from the

business logic.

A separated / test folder can hold all the additional test setup and

utilities not used by the application itself.

WHERE TO PUT YOUR BUILD AND SCRIPT FILES?

We tend to createa /scripts folder where we put our bash and
node scripts for database synchronization, front-end builds and
so on. This folder separates them from your application code
and prevents you from putting too many script files into the root

directory. List them in your npm scripts for easier usage.

https://docs.npmjs.com/misc/scripts

CHAPTER TWO:
CLEAN CODING

Writing clean code is what you must know and do in order to call
yourself a professional developer. There is no reasonable excuse for
doing anything less than your best.

In this chapter, we will cover general clean coding principles for
naming and using variables & functions, as well as some JavaScript
specific clean coding best practices.

‘Even bad code can function. But if the code isn’t clean, it can bring
a development organization to its knees.”
— Robert C. Martin (Uncle Bob)

FIRST OF ALL, WHAT DOES
CLEAN CODING MEAN?

Clean coding means that in the first place you write code for your
later self and for your co-workers and not for the machine.

Your code must be easily understandable for humans.

You know you are working on a clean code when each routine you
read turns out to be pretty much what you expected.

OF Cocle QUALITy: WFS/ﬂiNMTC

WTF Py

BAd code.

(c) 2008 Focus Shift

RisingStack 10

JAVASCRIPT CLEAN CODING BEST PRACTICES

Now that we know what every developer should aim for, let’s go
through the best practices!

How should | name my variables?

Use intention-revealing names and don’t worry if you have long

variable names instead of saving a few keyboard strokes.

If you follow this practice, your names become searchable, which
helps a lot when you do refactors or you are just looking for

something.

let d
let elapsed

const ages = arr.map((i) => i.age)

let daysSinceModification
const agesOfUsers = users.map((user) => user.age)

Also, make meaningful distinctions and don’t add extra, unnecessary

nouns to the variable names.

let nameString
let theUsers

let name

let users

Make your variable names easy to pronounce, because for the

human mind it takes less effort to process.

When you are doing code reviews with your fellow developers, these
names are easier to reference.

let fName, 1Name
let cntr

let full = false
if (cart.size > 100) {
full = true

let firstName, lastName
let counter

const MAX_CART_SIZE = 100

const isFull = cart.size > MAX_CART_SIZE

In short, don't cause extra mental mapping with your names.

How should I write my functions?

Your functions should do one thing only on one level of abstraction.

Functions should do one thing. They should do it well.
They should do it only.
— Robert C. Martin (Uncle Bob)

function getUserRouteHandler (req, res) {
const { userId } = req.params

knex('user')
.where({ id: userld })
firstQ
.then((user) => res.json(user))

const tableName = 'user'
const User = {
getOne (userId) {
return knex(tableName)
.where({ id: userId })
firstQ

function getUserRouteHandler (req, res) {
const { userId } = req.params
User.getOne(userId)

.then((user) => res.json(user))

After you wrote your functions properly, you can test how well you
did with CPU profiling - which helps you to find bottlenecks.

Use long, descriptive names
A function name should be a verb or a verb phrase, and it needs
to communicate its intent, as well as the order and intent of the

arguments.

A long descriptive name is way better than a short, enigmatic name
or a long descriptive comment.

function inv (user) {

function inviteUser (emailAddress) {

Avoid long argument list

Use a single object parameter and destructuring assignment instead.
It also makes handling optional parameters much easier.

function getRegisteredUsers (fields, include, fromDate,
toDate) { }
getRegisteredUsers(['firstName', 'lastName', 'email'],
['invitedUsers'], '2016-09-26', '2016-12-13')

function getRegisteredUsers ({ fields, include, fromDate,
toDate }) { }
getRegisteredUsers({
fields: ['firstName', 'lastName', ‘email'],
include: ['invitedUsers'],
fromDate: '2016-09-26',
toDate: '2016-12-13'
b

Reduce side effects

Use pure functions without side effects, whenever you can. They are
really easy to use and test.

https://blog.risingstack.com/node-js-tutorial-debugging-async-memory-leaks-cpu-profiling/

function addItemToCart (cart, item, quantity = 1) {
const alreadyInCart = cart.get(item.id) || @

cart.set(item.id, alreadyInCart + quantity)

return cart

function addItemToCart (cart, item, quantity = 1) {
const cartCopy = new Map(cart)
const alreadyInCart = cartCopy.get(item.id) || @
cartCopy.set(item.id, alreadyInCart + quantity)
return cartCopy

const cart = new MapQ)
Object.assign(cart, {
addItem (item, quantity = 1) {
const alreadyInCart = this.get(item.id) || @
this.set(item.id, alreadyInCart + quantity)
return this

Organize your functions in a file
according to the stepdown rule

Higher level functions should be on top and lower levels below. It

makes it natural to read the source code.

function getFullName (user) {
return °
function renderEmailTemplate (user) {

const fullName = getFullName(user)

return “Dear el .

function renderEmailTemplate (user) {

const fullName = getFullName(user)

return “Dear 0 OO0

function getFullName (user) {

return °

Query or modification

Functions should either do something (modify) or answer something
(query), but not both.

EVERYONE LIKES TO WRITE JAVASCRIPT
DIFFERENTLY, WHAT TO DO?

As JavaScript is dynamic and loosely typed, it is especially prone to
programmer errors.

Use project or company wise linter rules and formatting style.

The stricter the rules, the less effort will go into pointing out bad
formatting in code reviews. It should cover things like consistent
naming, indentation size, whitespace placement and even

semicolons.

The standard JS style is quite nice to start with, but in my opinion, it

isn't strict enough. | can agree most of the rules in the Airbnb style.

HOW TO WRITE NICE ASYNC CODE?

Use Promises whenever you can.

Promises are natively available from Node 4. Instead of writing
nested callbacks, you can have chainable Promise calls.

asyncFuncl((err, resultl) => {
asyncFunc2(resultl, (err, result2) => {
asyncFunc3(result2, (err, result3) => {
console.lor(result3)
b
b
b

asyncFuncPromisel()

.then(asyncFuncPromise2)
.then(asyncFuncPromise3)
.then((result) => console.log(result))
.catch((Cerr) => console.error(err))

http://standardjs.com/
https://github.com/airbnb/javascript
https://blog.risingstack.com/asynchronous-javascript/

Most of the libraries out there have both callback and promise
interfaces, prefer the latter. You can even convert callback APls
to promise based one by wrapping them using packages like es6-

promisify.

const fs = require('fs')

function readJSON (filePath, callback) {
fs.readFile(filePath, (err, data) => {
if Cerr) {
return callback(err)

}

try {
callback(null, JSON.parse(data))
} catch (ex) {
callback(ex)
}
b
}

readJSON(' ./package. json', (err, pkg) => { console.log(err,
pka) 1)

const fs = require('fs')
const promisify = require('es6-promisify')

const readFile = promisify(fs.readFile)
function readJSON (filePath) {
return readFile(filePath)
.then((data) => JSON.parse(data))

readJSON(C' . /package. json')
.then((pkg) => console.log(pkg))
.catch((Cerr) => console.error(err))

The next step would be to use async/await (= Node 7) or
generators with co (= Node 4) to achieve synchronous like control

flows for your asynchronous code.

https://www.npmjs.com/package/es6-promisify
https://www.npmjs.com/package/es6-promisify

const request = require('request-promise-native')

function getExtractFromWikipedia (title) {
return request({

uri: 'https://en.wikipedia.org/w/api.php',

as: {
titles: title,
action: 'query',
format: 'json',
prop: 'extracts',
exintro: true,
explaintext: true

}

method: 'GET',

json: true

b
.then((body) => Object.keys(body.query.pages).map((key) =>
body.query.pages[key].extract))

.then((extracts) => extracts[0])

.catch(Cerr) => {
console.error('getExtractFromNikipedia() error:', err)
throw err

D)

async function getExtractFromWikipedia (title) {
let body
try {
body = await request({ i9)
} catch Cerr) {
console.error('getExtractFromWikipedia() error:', err)
throw err

const extracts = Object.keys(body.query.pages).map((key) =>
body.query.pages[key].extract)
return extracts[0]

const co = require('co")

const getExtractFromWikipedia = co.wrap(function * (title) {
let body
try {
body = yield request({ iD)
} catch (err) {
console.error('getExtractFromWikipedia() error:', err)
throw err

const extracts = Object.keys(body.query.pages).map((key) =>
body.query.pages[key].extract)
return extracts[0]

b

getExtractFromWikipedia('Robert Cecil Martin')
.then((robert) => console.log(robert))

HOW SHOULD | WRITE PERFORMANT CODE?

In the first place, you should write clean code, then use profiling to
find performance bottlenecks.

Never try to write performant and smart code first, instead, optimize
the code when you need to and refer to true impact instead of micro-
benchmarks.

Although, there are some straightforward scenarios like eagerly
initializing what you can (eg. joi schemas in route handlers, which
would be used in every request and adds serious overhead if
recreated every time) and using asynchronous instead of blocking
code.

RisingStack

18

https://blog.risingstack.com/node-js-tutorial-debugging-async-memory-leaks-cpu-profiling/

CHAPTER THREE:
ASYNC BEST PRACTICES

In this chapter, we cover what tools and techniques you have at your
disposal when handling Node.js asynchronous operations: async.
js, promises, generators and async functions. After reading this part,
you'll know how to avoid the despised callback hell!

Asynchronous programming in Node.js
Previously we have gathered a strong knowledge about
asynchronous programming in JavaScript and understood how the

Node.js event loop works.

If you did not read these articles, | highly recommend them as
introductions!

THE PROBLEM WITH NODE.JS ASYNC

Node.js itself is single threaded, but some tasks can run parallelly -
thanks to its asynchronous nature.

But what does running parallelly mean in practice?

Since we program a single threaded VM, it is essential that we do not
block execution by waiting for I/0, but handle them concurrently with
the help of Node.js’s event driven APlIs.

Let’s take a look at some fundamental patterns, and learn how we

can write resource efficient, non-blocking code, with the built-in
solutions of Node.js and some third-party libraries.

THE CLASSICAL APPROACH - CALLBACKS

Let’s take a look at these simple async operations. They do nothing
special, just fire a timer and call a function once the timer finished.

RisingStack

19

https://blog.risingstack.com/node-hero-async-programming-in-node-js/
https://blog.risingstack.com/node-js-at-scale-understanding-node-js-event-loop/

function fastFunction (done) {
setTimeout(function OO {
done()
}, 100)

}

function slowFunction (done) {
setTimeout(function OO {
done()
}, 300)
}

Seems easy, right?

Our higher-order functions can be executed sequentially or parallelly
with the basic “pattern” by nesting callbacks - but using this method

can lead to an untameable callback-hell.

function runSequentially (callback) {
fastFunction((err, data) => {
if (err) return callback(err)
console.log(data)

slowFunction((err, data) => {

if (Cerr) return callback(err)
console.log(data)

Never use the nested callback approach for handling asynchronous

Node.js operations!

AVOIDING CALLBACK HELL WITH CONTROL
FLOW MANAGERS

To become an efficient Node.js developer, you have to avoid the
constantly growing indentation level, produce clean and readable

code and be able to handle complex flows.

Let us show you some of the libraries we can use to organize our

code in a nice and maintainable way!

#1: Meet the Async Module

Async is a utility module which provides straight-forward, powerful

functions for working with asynchronous JavaScript.

Async contains some common patterns for asynchronous flow
control with the respect of error-first callbacks.

Let's see how our previous example would look like using async!

async.waterfall([fastFunction, slowFunction], () => {

console.log('done")

D)

What kind of witchcraft just happened?

Actually, there is no magic to reveal. You can easily implement your
async job-runner which can run tasks parallelly and wait for each to
be ready.

Let’s take a look at what async does under the hood!

function(tasks, callback) {
callback = once(callback || noop);
if (!isArray(tasks)) return callback(new Error('First
argument to waterfall must be an array of functions'));
if (!tasks.length) return callback();
var taskIndex = 0;

function nextTask(args) {
if (taskIndex === tasks.length) {
return callback.apply(null, [null].concat(args));

var taskCallback = onlyOnce(rest(function(err, args) {
if Cerr) {
return callback.apply(null,
[err].concat(args));
}
nextTask(args);
s

args.push(taskCallback);

var task = tasks[taskIndex++];
task.apply(null, args);

nextTask([1);

Essentially, a new callback is injected into the functions, and this is
how async knows when a function is finished.

https://github.com/caolan/async

#2: Using co - generator based flow-control for Node.js

In case you wouldn't like to stick to the solid callback protocol, then
co can be a good choice for you.

co is a generator based control flow tool for Node.js and the browser,

using promises, letting you write non-blocking code in a nice-ish way.

co is a powerful alternative which takes advantage of generator
functions tied with promises without the overhead of implementing
custom iterators.

const fastPromise = new Promise((resolve, reject)
fastFunction(resolve)

19}

const slowPromise = new Promise((resolve, reject)
slowFunction(resolve)

D)

co(function * O {

/ield fastPromise

d slowPromise
B .then(O => {
console.log('done")

19}

As for now, | suggest to go with co, since one of the most waited
Node.js async/await functionality is only available in the nightly,
unstable v7.x builds. But if you are already using Promises,
switching from co to async function will be easy.

This syntactic sugar on top of Promises and Generators will
eliminate the problem of callbacks and even help you to build nice

flow control structures. Almost like writing synchronous code, right?

Stable Node.js branches will receive this update in the near future,
so you will be able to remove co and just do the same.

FLOW CONTROL IN PRACTICE

As we have just learned several tools and tricks to handle async, it
is time to do some practice with fundamental control flows to make
our code more efficient and clean.

https://github.com/tj/co
https://blog.risingstack.com/introduction-to-koa-generators/
https://blog.risingstack.com/introduction-to-koa-generators/
https://blog.risingstack.com/async-await-node-js-7-nightly/

Let's take an example and write a route handler for our web app,
where the request can be resolved after 3 steps: validateParams,

dbQuery and serviceCall.

If you'd like to write them without any helper, you'd most probably
end up with something like this. Not so nice, right?

function handler (done) {
validateParams((err) => {
if Cerr) return done(err)
dbQuery((err, dbResults) => {

if (err) return done(err)
serviceCall((err, serviceResults) => {
done(err, { dbResults, serviceResults })
b
b
b
}

Instead of the callback-hell, we can use the async library to refactor

our code, as we have already learned:

function handler (done) {
async.waterfall([validateParams, dbQuery, serviceCall],
done)

}

Let’s take it a step further! Rewrite it to use Promises:

function handler O {
return validateParams()
.then(dbQuery)
.then(serviceCall)

.then((result) => {
console.log(result)
return result

19}

Also, you can use co powered generators with Promises:

handler = co.wrap(function * OO {
validateParams()

dbResults = dbQuery()
serviceResults eld serviceCallQ)
rn { dbResults, serviceResults }

It feels like a “synchronous” code but still doing async jobs one after
each other.

Lets see how this snippet should work with async / await.

on handler () {
ait validateParams()
dbResults = dbQuery()

serviceResults ait serviceCallQ)
n { dbResults, serviceResults }

TAKEAWAY RULES FOR NODE.JS & ASYNC

Fortunately, Node.js eliminates the complexities of writing thread-

safe code. You just have to stick to these rules to keep things
smooth:

* As a rule of thumb, prefer async over sync API, because using a non-
blocking approach gives superior performance over the
synchronous scenario.

* Always use the best fitting flow control or a mix of them in order
reduce the time spent waiting for I/0 to complete.

You can find all of the code from this article in this repository.

https://github.com/RisingStack/nodejs-at-scale-handling-async

CHAPTER FOUR: EVENT SOURCING

Event Sourcing is a powerful architectural pattern to handle complex
application states that may need to be rebuilt, re-played, audited or
debugged.

From this chapter you can learn what Event Sourcing is, and when
should you use it. We'll also take a look at some Event sourcing

examples with code snippets.

EVENT SOURCING

Event Sourcing is a software architecture pattern which makes

it possible to reconstruct past states (latest state as well). It's
achieved in a way that every state change gets stored as a sequence
of events.

The State of your application is like a user’s account balance or
subscription at a particular time. This current state may only exist in

memory.

Good examples for Event Sourcing are version control systems that
stores current state as diffs. The current state is your latest source
code, and events are your commits.

WHY IS EVENT SOURCING USEFUL?

In our hypothetical example, you are working on an online money
transfer site, where every customer has an account balance. Imagine
that you just started working on a beautiful Monday morning when

it suddenly turns out that you made a mistake and used a wrong
currency exchange for the whole past week. In this case, every
account which sent and received money in a last seven days are in a

corrupt state.
With event sourcing, there's no need to panic!
If your site uses event sourcing, you can revert the account balances

to their previous uncorrupted state, fix the exchange rate and replay
all the events until now. That's it, your job and reputation is saved!

RisingStack

25

Other use-cases

You can use events to audit or debug state changes in your system.
They can also be useful for handling SaaS subscriptions. In a usual
subscription based system, your users can buy a plan, upgrade it,
downgrade it, pro-rate a current price, cancel a plan, apply a coupon,
and so on... A good event log can be very useful to figure out what
happened.

So with event sourcing you can:

* Rebuild states completely
* Replay states from a specific time

* Reconstruct the state of a specific moment for temporary query

WHAT IS AN EVENT?

An Event is something that happened in the past. An Eventis not a
snapshot of a state at a specific time; it's the action itself with all the
information that's necessary to replay it.

Events should be a simple object which describes some action that
occurred. They should be immutable and stored in an append-only
way. Their immutable append-only nature makes them suitable to
use as audit logs too.

For proper Event Sourcing, you must create an event for every state
change & preserve the order of events as well. This is what makes
possible to undo and redo events or even replay them from a specific
timestamp.

Be careful with External Systems!

As any software pattern, Event Sourcing can be challenging at some
points as well.

The external systems that your application communicates with are
usually not prepared for event sourcing, so you should be careful
when you replay your events. I'm sure that you don’t wish to charge
your customers twice or send all welcome emails again.

To solve this challenge, you should handle replays in your
communication layers!

RisingStack

26

COMMAND SOURCING

Command Sourcing is a different approach from Event Sourcing -
make sure you don’t mix ‘em up by accident!

Event Sourcing:

* Persist only changes in state

* Replay can be side-effect free

Command Sourcing:

* Persist Commands
* Replay may trigger side-effects

EXAMPLE FOR EVENT SOURCING

In this simple example, we will apply Event Sourcing for our
accounts:

const accounts = {
accountl: { balance: 100 },
account2: { balance: 50 }

}

const events = [
{ type: 'open', id: 'accountl', balance: 150, time: @ },
{ type: 'open', id: 'account2', balance: @, time: 1 },
{ type: 'transfer', fromId: 'accountl', told: 'account2'
amount: 50, time: 2 }

1

Let’s rebuild the latest state from scratch, using our event log:

const accounts = events.reduce((accounts, event) => {
if (event.type ‘open') {
accounts[event.id].balance = event.balance
} else if (event.type === 'transfer') {

accounts[event.fromId].balance -= event.amount
accounts[event.told].balance += event.amount

}

return accounts

D

Undo the latest event:

const accounts = events.splice(-1).reduce((accounts, event) =>

{

if (event.type === 'open') {

delete accounts[event.id]

} else if (event.type transfer') {
accounts[event. fromId].balance += event.amount
accounts[event.told].balance -= event.amount

}

return accounts

LD

Query accounts state at a specific time:

function getAccountsAtTime (time) {
return events.reduce((accounts, event) => {
if (time > event.time {
return accounts

if (event.type === 'open') {
accounts[event.id].balance = event.balance

} else if (event.type === "transfer') {

accounts[event.fromId].balance -= event.amount
accounts[event.told].balance += event.amount
}
return accounts
b AD
}

const accounts = getAccountsAtTime(1)

LEARNING MORE..

For more detailed examples, you can check out our Event Sourcing

Example repository.

For more general and deeper understanding of Event Sourcing |
recommend to read these articles:

* Martin Fowler - Event Sourcing
* MSDN - Event Sourcing Pattern

https://github.com/RisingStack/event-sourcing-example
https://github.com/RisingStack/event-sourcing-example
http://martinfowler.com/eaaDev/EventSourcing.html
https://msdn.microsoft.com/en-us/library/dn589792.aspx

CHAPTER FIVE: CQRS EXPLAINED
What is CQRS?

CQRS is an architectural pattern, where the acronym stands for
Command Query Responsibility Segregation. We can talk about
CQRS when the data read operations are separated from the data

write operations, and they happen on a different interface.

In most of the CQRS systems, read and write operations use
different data models, sometimes even different data stores.

This kind of segregation makes it easier to scale, read and write
operations and to control security - but adds extra complexity to your

system.
The level of segregation can vary in CQRS systems:

* single data stores and separated model for
reading and updating data

* separated data stores and separated model for
reading and updating data

In the simplest data store separation, we can use read-only replicas

to achieve segregation.

WHY AND WHEN TO USE CQRS?

In a typical data management system, all CRUD (Create Read Update
Delete) operations are executed on the same interface of the entities
in a single data storage. Like creating, updating, querying and
deleting table rows in an SQL database via the same model.

CQRS really shines compared to the traditional approach (using a
single model) when you build complex data models to validate and
fulfil your business logic when data manipulation happens. Read
operations compared to update and write operations can be very
different or much simpler - like accessing a subset of your data only.

REAL WORLD EXAMPLE

In our Node.js Monitoring Tool, we use CQRS to segregate saving
and representing the data. For example, when you see a distributed
tracing visualization on our Ul, the data behind it arrived in smaller

RisingStack

29

https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-3&utm_campaign=trace

chunks from our customers application agents to our public

collector API.

In the collector API, we only do a thin validation and send the data

to a messaging queue for processing. On the other end of the queue,
workers are consuming messages and resolving all the necessary
dependencies via other services. These workers are also saving the
transformed data to the database.

If any issue happens, we send back the message with exponential
backoff and max limit to our messaging queue. Compared to this
complex data writing flow, on the representation side of the flow, we
only query a read-replica database and visualize the result to our

customers.

consume

C 's collector Collector API - RabbitMQ
HTTP: publish
Worker DB Public API
read-
replica

Dependency A Dependency B

Trace by RisingStack data processing with CQRS

CQRS AND EVENT SOURCING

I've seen many times that people are confusing these two concepts.
Both of them are heavily used in event driven infrastructures like in

an event driven microservices, but they mean very different things.

REPORTING DATABASE - DENORMALIZER

In some event driven systems, CQRS is implemented in a way that
the system contains one or multiple Reporting databases.

A Reporting database is an entirely different read-only storage that
models and persists the data in the best format for representing it.
It's okay to store it in a denormalized format to optimize it for the
client needs. In some cases, the reporting database contains only
derived data, even from multiple data sources.

RisingStack

30

In a microservices architecture, we call a service the Denormalizer
if it listens for some events and maintains a Reporting Database
based on these. The client is reading the denormalized service’s

reporting database.

An example can be that the user profile service emits a user.edit
event with { id: 1, name: ‘John Doe’, state: ‘churn’ }
payload, the Denormalizer service listens to it but only stores the

{ name: ‘John Doe’ } inits Reporting Database, because the

client is not interested in the internal state churn of the user.

It can be hard to keep a Reporting Database in sync. Usually, we can

only aim to eventual consistency.

A CQRS NODE.JS EXAMPLE REPO

For our CQRS with Denormalizer Node.js example visit our cqrs-

Query data ;

Actor

example GitHub repository.

OUTRO

CQRS is a powerful architectural pattern to segregate read and write
operations and their interfaces, but it also adds extra complexity to

your system.

In most of the cases, you shouldn’t use CQRS for the whole system,
only for specific parts where the complexity and scalability make it

necessary.

RisingStack

31

https://github.com/RisingStack/cqrs-example
https://github.com/RisingStack/cqrs-example

To read more about CQRS and Reporting databases, | recommend to
check out these resources:

* CQRS - Martin Fowler

* CQRS - MSDN

* CQRS, Task Based Uls, Event Sourcing agh! - Greg Young

* CQRS and Event Sourcing - Code on the Beach 2014 - Greg Young
* ReportingDatabase - Martin Fowler

+1: THE IMPORTANCE OF
NODE.JS MONITORING

Getting insights into production systems is critical when you are
building Node.js applications! You have an obligation to constantly
detect bottlenecks and figure out what slows your product down.

An even greater issue is to handle and preempt downtimes. You
must be notified as soon as they happen, preferably before your
customers start to complain. Based on these needs, proper
monitoring should give you at least the following features and
insights into your application’s behavior:

Profiling on a code level
Monitoring network connections
Performance dashboard
Real-time alerting

We at RisingStack build a solution which excels with all of these
functionalities, and even more.

If you'd like to give it a try, you can now do it for free - just head over
to our landing page at: trace.risingstack.com

=mn NODE.J]S

[R

= ‘¥ DEBUGGING

16rpm

\s:ov FRONTEND

MADE EASY

® USER SERVICE

SERVICEWITHISSUE o

Find and fix issues using profilers,
distributed tracing, error detection
and custom metrics.

https://martinfowler.com/bliki/CQRS.html
https://msdn.microsoft.com/en-us/library/dn568103.aspx
http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/
https://www.youtube.com/watch?v=JHGkaShoyNs
https://martinfowler.com/bliki/ReportingDatabase.html
https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-3&utm_campaign=trace
https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-3&utm_campaign=trace

